Bruno Associates

POST OFFICE BOX 387 • WOODSTOCK • VERMONT 05091802-457-3560 • FAX: 802-457-4853 • E-MAIL: BRUNO@VERMONTEL.NET

MEMORANDUM

To: Jay Gamble

From: Nicole Kesselring, PE

Re: Mount Sunapee Resort West Bowl Expansion

Snowmelt Drainage and Watershed Analysis

Date: 5/27/04

In response to our meeting on May 3, 2004, regarding the above mentioned project, our office has performed a hydrologic study to examine the potential impact snowmaking operations could have on The Gunnison Brook, Lake Gunnison and Rand Pond.

During that meeting you conveyed the concerns of some Goshen Citizens regarding:

- Potential impact to the water quality and quantity of Lake Gunnison, also known as the Goshen Ocean,
- Potential impact to the water quality and quantity of Rand Pond, and
- The potential for flooding and washout along Brook Road.

As part of this study, we performed a field visit to each of the water bodies, and examining all culverts and bridges on the Gunnison Brook along Brook Rd. Further information was gathered through the use of USGS Maps, the FEMA Flood Insurance Study for Newport, NH (none is currently available for Goshen), FEMA Flood Insurance Maps for Goshen, and a phone conversation with Alan Hanscom of the NH DOT.

We feel that the following study will provide information which will demonstrate that the work proposed by Mt. Sunapee in the West Bowl Area will not adversely impact the Gunnison Brook Watershed.

Per our conversation, you stated that Mt. Sunapee proposes to make snow on 75 Ac of proposed trails in the West Bowl. 2½ feet of snow is typically made over each Ac, at a volume of 180,000 gallons per ac-ft of snow. This means that the entire volume of water proposed for snowmaking in this area will be approximately 33.75 million gallons of water.

The West Bowl area lies on the western slope of Mt. Sunapee within the Gunnison Brook Watershed. This watershed is comprised of 4,500 Ac to the point where the Gunnison Brook crosses under Rt. 10. The West Bowl area drains to an unnamed tributary on the eastern side of Brook Rd., which then discharges into the Gunnison Brook near the 90° corner in Brook Rd.(Merrill's corner). From this point the Gunnison Brook follows

Brook Rd. its entire length, and crosses Rt. 10 prior to discharging into the South Branch of the Sugar River. See Exhibit 1.

Lake Gunnison: Lake Gunnison, also know as the Goshen Ocean, lies within the Sugar River Watershed area, on Blood Brook. The Blood Brook was dammed in this part of the valley to create the lake. Although Gunnison Brook and Lake Gunnison both lie within the Sugar River Watershed, Lake Gunnison is fed by Blood Brook, and is not hydraulically connected to Gunnison Brook. Chandler Hill and other mountain peaks create a drainage divide between the Gunnison Brook and Blood Brook, separating these two watersheds. Waters from these two brooks meet in Goshen, across Rt. 10 from Brook Rd., where the South Branch of the Sugar River begins.

Due to the hydraulic separation of the lake from Gunnison Brook, there is no potential for the lakes water level or water quality to be affected by snowmelt from the proposed trails within Mt. Sunapee Resort's West Bowl Area.

Rand Pond: Rand Pond lies within the Gunnison Brook Watershed. The pond's watershed area is approximately 270 Ac, and does not receive any runoff from the Mt. Sunapee West Bowl area. Rand Pond is fed by numerous tributaries, and it outflows drain into the Gunnison Brook. Due to the fact that the pond is located hydraulically upgradient of the Gunnison Brook, its inflows and water quality will not in any way be affected by snowmaking in the West Bowl area.

Bridges and Culverts along Brook Rd.: To assess the potential impact that snowmaking melt waters could have on the Gunnison Brook watershed a number of factors were examined.

First the snowmelt water quantity in relation to storm runoff from the entire watershed was examined. Based on The FEMA Flood Insurance Study for Newport, since none is available for Goshen, a discharge per square mile of watershed was calculated. This discharge was then applied to the Gunnison Brook Watershed area which is comprised of 7 Ac to arrive at stream flows for Gunnison Brook. These flows can be viewed in Table 1.

Table 1: Watershed Flow Data

S. Branch S	ugar River @	Coon Bro	ook Rd.	Gunnison Bro	ok Watershed
Storm Event (yr)	Stream Flow (cfs) *	Drainage Area	Discharge per sq. mi	Drainage Area	Stream Flow (cfs) *
10	1,290	(sq. miles) 26.5	(cfs) 49	(sq. miles) 7	341
50	1,860	26.5	70	7	491
100	2,120	26.5	80	7	560

(Please note that due to the fact that peak flows for Gunnison Brook Watershed were calculated based on a much larger drainage area, that for a portion of the South Branch of the Sugar River, the actual peak flows out of the Gunnison Brook Watershed is most likely greater than the numbers represented in the table.)

Once the storm event streamflow for Gunnison Brook Watershed was calculated, we determined what percentage of total flow the snowmelt water from the West Bowl area will be. Snowmelt occurs at the end of the ski season as daily temperatures slowly rise. In any given year, snow can usually be seen left on the mountain in excess of 4 weeks after the mountain has closed. Taking into considering that when the mountain closes, melt has most likely already been occurring for up to 4 weeks, it would be reasonable assumed that snowmelt off the mountain actually occurs over an 8 week period of time. To be conservative, our calculations used a 7 day and 30 day melt period to determine what percentage of streamflow these quantities would represent. A 7 day melt time is unrealistic, but it puts into perspective the flow quantities we are dealing with.

As can be seen in Table 2, if melt were to occur over 7 days, snowmelt runoff would represent 2.2% of streamflow for a 10 year storm event and 1.3% of streamflow for a 100 year storm event. Similarly, runoff from a 30 day melt period would represent 0.5% to 0.3 % for a 10 and 100 year storm, respectively. As these calculations show, the snowmelt runoff, will represent such a small quantity of total flow, that it should not create an adverse impact.

Table 2: Snowmelt runoff as a % of Streamflow

Gunnison Broo	k Watershed	Snowmelt runoff	as % of Streamflow
Storm Event	Stream Flow	7 day melt (7.46cfs)	30 day melt (1.74 cfs)
(yr)	(cfs) *	(%)	(%)
10	341	2.2	0.5
50	491	1.5	0.4
100	560	1.3	0.3

Bridges and culverts along Brook Road were examined as part of this study. Our site visit revealed 4 driveway and class 4 road bridges, 2 culvert crossings, and 3 bridge crossings for Brook Rd. As Brook Rd. is a state road, bridges on this road are designed to the flood of record or the 50 year storm event, which ever is greater. All the bridges viewed appeared to be in good condition, with adequate clearance to pass large storm events. The two culverts under Cross Rd. appear to each be 68" diameter steel culverts, and appear to be in good condition. A single 60" culvert under a farm road, just east of the Province Rd./Brook Rd. intersection

was severely clogged with branches and debris, thereby decreasing its capacity. The area in which this culvert is located is shown as flood plain on the FEMA Flood Maps, so it is likely, that flooding occurs in this area in the spring time. It did not appear that the crossing is used for more than access to fields on the other side of the brook.

Alan Hanscom of the NH DOT was also contacted to determine if he was aware of any problems in this area. He stated that from time to time road shoulder maintenance is necessary due to washout out from some larger storm events, where the brook comes very close to the road. He was unaware of any bridge issues along Gunnison Brook.

Storm event runoff from the proposed trails is expected to be negligible in terms of the overall watershed area, since no impervious area will be created, and the infiltration characteristics of the land will remain substantially the same.

In summary, Lake Gunnison and Rand Pond will be completely unaffected by any increase in snowmelt from the West Bowl area because they are hydraulically disconnected. The increase in flow that will be realized by the Gunnison Brook during spring melt is a very small percentage of its storm event flow and is unlikely to create a noticeable impact at any bridges or culvert crossings. Based on the above discussion, it is my professional opinion that there will not be any adverse impact from the increase in snowmelt created by the proposed West Bowl area.

West Bowl Area Fact Sheet

Gunnison Brook Watershed Area =

4,500 Ac

Gunnison Brook has it headwaters at the top of Mt. Sunapee, and follows Brook Road down to Rt. 10. Shortly after it crosses under Rt. 10 it converges with the South Branch of the Sugar River.

Snowmelt in West Bowl Area
Proposed snowmaking trail area =

75 Ac

Trail area =

1.67 % of Watershed

Snow making snow quantity=

180,000 gal/ac-ft

snow making snow depth =

2.5 ft

Total snowmaking snow quantity =

33,750,000 gal =

4,512,032 cf

Hypothetically, If entire snowmaking quantity melted over:

7 days

runoff to Gunnison Brook would be:

7.46 cfs

Hypothetically, If entire snowmaking quantity melted over:

30 days

runoff to Gunnison Brook would be:

1.74 cfs

In reality snow on mountain melts over a period of 4 - 6 weeks after Mt. Sunapee has closed. (runoff from melt begins prior to the mountain closing)

Gunnison E	Brook Wat	ershed	Snowmelt runoff	as % of Streamflow
Storm Event (yr)	Drainage Area	Stream Flow (cfs) *	7 day melt (7.46cfs) (%)	30 day melt (1.74 cfs) (%)
	(sq. miles)			
10	7	341	2.2	0.5
50	7	491	1.5	0.4
100	7	560	1.3	0.3

FEMA, Flood Insurance Study, Newport, NH

S. Branch S	Sugar River @	Coon Bro	ok Rd.	Gunnison Brook W	
Storm Event	Stream Flow	Drainage	Discharge	Drainage	Stream Flow
(yr)	(cfs) *	Area	per sq. mi	Area	(cfs) *
		(sq. miles)		(sq. miles)	
10	1,290	26.5	49	7	341
50	1,860	26.5	70	7	491
100	0.400	00.5	00	7	FC0
100	2,120	26.5	80	/	560

New Hampshire County Rainfall Frequency Data

County or Area Rainfall Amounts in Inches by Frequency

County or Area	1 Year Inches	2 Years Inches	5 Years Inches	10 Years Inches	25 Years Inches	50 Years Inches	100 Years Inches
Belknap	2.4	2.8	3.7	4.1	5.0	5.5	6.1
Carroll - South	2.5	2.9	3.8	4.3	5.2	5.5	6.2
Carroll - North	3.0	3.3	4.3	5.0	5.7	6.2	6.6
Cheshire	2.4	2.8	3.7	4.2	5.0	5.6	6.3
Coos - South	3.0	3.5	4.1	4.8	5.6	6.2	6.8
Coos - North	2.4	3.0	3.5	4.2	4.9	5.3	6.1
Grafton	2.4	2.7	3.6	4.2	4.9	5.2	5.9
Hillsborough	2.5	2.9	3.8	4.3	5.1	5.7	6.3
Merrimack	2.4	2.8	3.7	4.2	5.0	5.6	6.2
Rockingham	2.5	3.0	3.8	4.3	5.2	5.7	6.4
Strafford	2.5	3.0	3.8	4.3	5.1	5.6	6.3
Sullivan	2.3	2.7	3.6	4.1	4.8	5.3	6.0

http://www.rah and made and and tooland tooland tooland in 1 http://www.rah

TOWN OF NEWPORT, **NEW HAMPSHIRE** SULLIVAN COUNTY

APRIL 17, 1985

Federal Emergency Management Agency

COMMUNITY NUMBER - 330161

≫ MSC Digital Post Office

In the updated study, discharge-frequency relationships for the Sugar River were obtained from a hydrologic model of the Sugar River Basin using the HEC-1 Flood Hydrograph Package (Reference 4). This model did not include the area draining toward Lake Sunapee. It was determined that, with the high storage capacity of the lake, this area will not have a significant effect on the flooding downstream of the lake. To account for the lake dam outflows, 100 cubic feet per second (cfs) were added to HEC-1 discharges. This value was obtained from an integration of the curve of the average lake dam outflows for the past 20 years.

The discharges for the North Branch Sugar River and the South Branch Sugar River were determined using regional analyses of USCS gages in New Hampshire (Reference 5).

A summary of drainage area-peak discharge relationships for the streams studied by detailed methods is shown in Table 1, "Summary of Discharges."

TABLE 1 - SUMMARY OF DISCHARGES

	DRAINAGE AREA	p	EAK DISCH	ARGES (cfs)
FLOODING SOURCE AND LOCATION	(sq. miles)	15-YEAR	50-YEAR	100-YEAR	500-YEAR
SUGAR RIVER					
Downstream of confluence	19				
of North Branch Sugar					
River	204.11	7,252	10,417	13,028	18, 200
At Belknap Avenue	121.7	4,054	5,414	6,793	9,700
At State Route 10	76.01	1,720	2,367	3,053	4,600
NORTH BRANCH SUGAR RIVER					
At Old Cornish Turnpike	80.8	2,070	2,980	3,410	4,390
SOUTH BRANCE SUGAR RIVER					
At Elm Street	45.7	1,810	2,610	2,980	3,840
At Coon Brook Road	26.5	1,290	1,850	2,120	2,730

¹Includes area draining toward Lake Sunapee

3.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals.

MSC Digital Post Office Page: 14 15

FLOODING SO	SOURCE		FLOODWAY			BASE FLOOD NATER SURFACE EL	BASE FLOOD SURFACE ELEVATION	OLUM
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE PEED)	VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY (FEET	FIOODWAY NGVD)	22
Suger River			- An Valle o					
(continued)	AC. 5000000	¥						
i, t	56,8931	85	798	ξή α	846.9	845.9	847.2	
AU	56,9571	Ď,	629	8,4	847.4	847.4	847.7	
A.V	57,3521	111	A.	7,4	847.8	847.8	848.1	
MA	58,0571	212	957	cz **	85.	851+8	852,6	STATE OF THE STATE OF
Morth Branch			no Calledon de Trajan					
Sugar River			e 25 august			A.Vier		-
£	1222	80	304	11,2	773*3	765.83	765.8	
EL)	1903	90	646	ກ, ເກ	773.3	768.03	758.0	
ť	4,0802	13 55	759	4, TO	773.3	772.53	772.7	-
	8,6622	130	989	4	776-1	776.1	777.1	
Ħ	9,5522	E E	428	8.0	776.8	776.8	777.6	
щ	9,6042	Ω.	631	đ,	777.4	777.4	778.1	
Ġ	10, 1342	75	779	4.4	1777.9	777-9	778.6	
South Branch	70-226000							
Sugar River		,				W. F. V.		
ď	2422	84	403	7.4	788.3	783.73	784.0	
凸	309%	06	374	8.0	788.3	784.53	784.5	
ប	5,7542	228	E 54, 1	2.5	794.9	794.9	795.8	
Ü	11,6822	138	449	æ æ	803.1	803.1	803.4	
រដ	11,7512	150	650	4.5	803.5	803.5	804.0	
1 Preet above corporate limite 2 Preet above confinence with 3 Blevation computed without	above corporate limite above confluence with Sugar River ition computed without considerati	s Sugar River consideration	uo	kwater from	of backwater from Sugar River	Ta	And the state of t	
FEDERAL EMERGENCY A	NCY MANAGEMENT AGENCY	GENCY			FLO	FLOODWAY DATA	T	
SULLIYAN CO.)	NEWFUKI, NA LIYAN CO.)			SUGAR	RIVER-NO	RIVER-NORTH BRANCH	H SUGAR RIVER.	

TABLE 2

1-++--- //----- 1 ----- f----- f----- /072 (7200 '

TABLE 15.--PHYSICAL AND CHEMICAL PROPERTIES OF THE SOILS--Continued

		-	Weigt bulk	Permeability	Available	Soil			Organic
l name and p symbol	Depth:	Clay	Moist bulk density	1 CI WE GOTTION	water capacity	reaction 	K	Т	matter
.,,	In	Pet	G/em ³	<u>In/hr</u>	<u>In/in</u>	рН	- [Pct
MaB, MaC, MaD Marlow	0-8 8-24 24-60	3-10 3-10 3-10	1.00-1.30 1.30-1.60 1.60-2.05	0.6-2.0 0.6-2.0 0.06-0.6	0.10-0.23 0.06-0.20 0.05-0.12		0.24 0.32 0.20	3	2-8
MbB, MbC, MbD, MbE Marlow	0-4 4-24 24-60	3-10 3-10 3-10	1.00-1.30 1.30-1.60 1.60-2.05	0.6-2.0 0.6-2.0 0.06-0.6	0.10-0.23 0.06-0.20 0.05-0.12		0.20 0.32 0.20	3	
McB, McC, McD Monadnock	0-8 8-36 36-60	1-8 1-8 1-5	0.80-1.20 0.80-1.30 1.30-1.60	0.6-2.0 0.6-2.0 2.0-6.0	0.15-0.21 0.09-0.17 0.04-0.08	3.6-6.0 3.6-6.0	1 1		3-8
MfB, MfC, MfD Monadnock	0-2 2-36 36-60	1-8 1-8 1-5	0.80-1.20 0.80-1.30 1.30-1.60	0.6-2.0 0.6-2.0 2.0-6.0	0.14-0.20 0.09-0.17 0.04-0.08		0.24 0.28 0.17		
MrC*, MrD*, MrE*: Monadnock	0-2 2-36 36-60	1-8 1-8 1-5	0.80-1.20 0.80-1.30 1.30-1.60	0.6-2.0 0.6-2.0 2.0-6.0	0.10-0.18 0.09-0.17 0.04-0.08	3.6-6.0 3.6-6.0 3.6-6.0	0.24		
Hermon	0-3 3-17 17-60	2-6 2-7 1-4	0.95-1.20 1.00-1.30 1.50-1.70	6.0-20 6.0-20 6.0-20	0.07-0.20 0.05-0.17 0.03-0.10	3.6-6.0	0.10	1	
MuD*: Monadnock	0-2 2-36 36-60	1-8 1-8 1-5	0.80-1.20 0.80-1.30 1.30-1.60	0'.6-2.0 0.6-2.0 2.0-6.0	0.14-0.20 0.09-0.17 0.04-0.08	3.6-6.0 3.6-6.0 3.6-6.0	10.28	1	
Hermon	!!!	2-6 2-7 1-4	0.95-1.20 1.00-1.30 1.50-1.70	6.0-20 6.0-20 6.0-20	0.07-0.20 0.05-0.17 0.03-0.10	3.6-5.5 3.6-6.0 5.1-6.0	10.10	1	
MvB*, MvC*, MvD*: Monadnock	\ 0-2 2-36 36-60		0.80-1.20 0.80-1.30 1.30-1.60	0.6-2.0 0.6-2.0 2.0-6.0	0.14-0.20 0.09-0.17 0.04-0.08	3.6-6.0 3.6-6.0 3.6-6.0	0.28 0.17		
Lyman	. 0-2 2-15 15	The state of the s	0.75-1.20 0.90-1.40	2.0-6.0	0.13-0.24 0.08-0.28	3.6-6.0	0.20	1	
MwB*, MwC*, MwD*: Monadnock	 0-2 2-36 36-60	1-8 1-8 1-5	0.80-1.20 0.80-1.30 1.30-1.60	0.6-2.0 0.6-2.0 2.0-6.0	0.14-0.20 0.09-0.17 0.04-0.08	3.6-6.0 3.6-6.0 3.6-6.0	10.28	3 7 	
Lyman	 0-2 2-15 15	2-10 2-10 	0.75-1.20 0.90-1.40	2.0-6.0 2.0-6.0	0.13-0.24 0.08-0.28	3.6-6.0	0.20	2	
Rock outcrop.							10 1	71 5	3-7
Na Naumburg	- 0-7 7-33 33-60	1-5	1.20-1.50 1.20-1.50 1.45-1.65	2.0-6.0 6.0-20 6.0-20	0.05-0.09 0.06-0.08 0.04-0.06	3.6-5.5 3.6-5.5 4.5-6.5	0.1	7 7 	
NnA Ninigret	 - 0-9 9-26 26-60		1.00-1.25 1.35-1.60 1.45-1.70	2.0-6.0 2.0-6.0 6.0-20	0.13-0.25 0.06-0.18 0.01-0.13	4.5-6.0 4.5-6.0 4.5-6.0	0 0.3	2 0 	
Of Ondawa	- 0-10 10-36 36-60	1-9	1.15-1.40 1.15-1.45 1.30-1.50	2.0-6.0 2.0-6.0 2.0-20	0.12-0.26 0.12-0.22 0.04-0.13	4.5-6.5 4.5-6.5 4.5-6.5	5 10.3	71	5 3-7

See footnote at end of table.

NBI

- 10 1 1000

Allolol Skilder Skilder

Templa Familia Familia Familia

Bridge
otos and
Road
Photos and
Train
Pictures
For Sale
Online

Place Name: Goshen (Town of)

NBI Structure Number: 009800850011700 Longitude: -72° 08' 51", Latitude: 43° 18' 5"

Show me a Map on the U.S. Census Service Tiger Map Server

Facility Carried: BROOK ROAD

Feature Intersected: GUNNISON BROOK Location: .05 MI NE OF JCT NH 10

Year Built: 1940, Reconstructed: 1998

Owned and maintained by: State Highway Agency

Functional Classification: Rural Minor Collector

Service On Bridge: **Highway** <u>Service Under Bridge: **Waterway**</u>

Lanes On Structure: 2

Structure Length: 8.9 m
Bridge Roadway Width: 8.9 m
Operating Rating: 56. Metric Tons
Number of Spans in Main Unit: 1 Span

Material Design: Concrete Design Construction: Slab

Deck Condition: Good Condition

Superstructure Condition: Good Condition Substructure Condition: Good Condition

Scour: Foundations determined to be stable for assessed scour conditions

Bridge Railing: Meets currently acceptable standards.

Inspection Date: May, 2000

Structural Evaluation: Better than present minimum criteria

Water Adequacy Evaluation: Superior to present desirable criteria

Average Daily Traffic: 200

Year of Average Daily Traffic: 1984

Sufficiency Rating: 97. %

Return to National Bridge Inventory Database query form.

Disclaimer Statement - Alexander Svirsky, Massroads.com and Granitehighways.com provide no warranty whatsoever, express or implied, as to the accuracy, reliability or completeness of furnished data.

NBI

CINTI CINTI TOTAL TENTAL

TENNS INSIGN SENSON SECTION

Bridge
stos and
Road
Photos and
Train
Pictures
For Sale
Online

Place Name: Goshen (Town of)

NBI Structure Number: 009800870012000 Longitude: -72° 08' 39", Latitude: 43° 18' 14"

Show me a Map on the U.S. Census Service Tiger Map Server

Facility Carried: BROOK ROAD

Feature Intersected: GUNNISON BROOK Location: .32 MI NE OF JCT NH 10

Year Built: 1940

Owned and maintained by: State Highway Agency

Functional Classification: Rural Minor Collector

Service On Bridge: **Highway** Service Under Bridge: **Waterway**

Lanes On Structure: 2

Structure Length: 9.8 m
Bridge Roadway Width: 8.6 m
Operating Rating: 25. Metric Tons
Number of Spans in Main Unit: 1 Span

Material Design: Steel

Design Construction: Stringer/Multi-beam or Girder

Deck Condition: Good Condition

Superstructure Condition: Good Condition Substructure Condition: Good Condition

Scour: Foundations determined to be stable for assessed scour conditions

Bridge Railing: Does not meet currently acceptable standards.

Inspection Date: May, 2000

Structural Evaluation: Somewhat better than minimum adequacy to tolerate being left in place

as is

Water Adequacy Evaluation: Equal to present minimum criteria

Average Daily Traffic: 200

Year of Average Daily Traffic: 1984

Sufficiency Rating: 74. %

Return to National Bridge Inventory Database query form.

Disclaimer Statement - Alexander Svirsky, Massroads.com and Granitehighways.com provide no warranty whatsoever, express or implied, as to the accuracy, reliability or completeness of furnished data.

NRI

THAIN THAIN TOLER TOLE TOLER T

Danasak Hidiot Seargi Hidiot Medilei Mainis

Place Name: Goshen (Town of)

NBI Structure Number: 009800900012300 Longitude: -72° 08' 30", Latitude: 43° 18' 20"

Show me a Map on the U.S. Census Service Tiger Map Server

Facility Carried: BROOK ROAD

Feature Intersected: GUNNISON BROOK Location: .47 MI N E OF JCT NH 10

Year Built: 1945

Owned and maintained by: State Highway Agency

Functional Classification: Rural Minor Collector

Service On Bridge: **Highway** Service Under Bridge: **Waterway**

Lanes On Structure: 2

Structure Length: 7 m
Bridge Roadway Width: 8 m
Operating Rating: 48. Metric Tons
Number of Spans in Main Unit: 1 Span
Material Design: Congrets

Material Design: Concrete Design Construction: Slab

Deck Condition: Good Condition

Superstructure Condition: Good Condition Substructure Condition: Good Condition

Scour: Foundations determined to be stable for assessed scour conditions

Bridge Railing: Meets currently acceptable standards.

Inspection Date: May, 2000

Structural Evaluation: **Better than present minimum criteria** Water Adequacy Evaluation: **Equal to present desirable criteria**

Average Daily Traffic: 200

Year of Average Daily Traffic: 1984

Sufficiency Rating: 95. %

Return to National Bridge Inventory Database query form.

Disclaimer Statement - Alexander Svirsky, Massroads.com and Granitehighways.com provide no warranty whatsoever, express or implied, as to the accuracy, reliability or completeness of furnished data.

WEI

表面圖

HANDERS PARTI SEARCH MINICE FARGURE

CESSIS

Bridge
otos and
Road
Photos and
Train
Pictures
For Sale
Online

Place Name: Goshen (Town of)

NBI Structure Number: 009801050012900 Longitude: -72° 07' 32", Latitude: 43° 18' 45"

Show me a Map on the U.S. Census Service Tiger Map Server

Facility Carried: CROSS ROAD

Feature Intersected: GUNNISON BROOK

Location: TOWN RD

Year Built: 1940

Owned and maintained by: City or Municipal Highway Agency

Functional Classification: Rural Local

Service On Bridge: **Highway**Service Under Bridge: **Waterway**

Lanes On Structure: 2

Structure Length: 4.3 m

Operating Rating: 9.1 Metric Tons Number of Spans in Main Unit: 2 Spans

Material Design: Aluminum, Wrought Iron or Cast Iron Design Construction: Culvert (includes frame culverts)

Scour: Foundations determined to be stable for assessed scour conditions

Bridge Railing: Does not meet currently acceptable standards.

Inspection Date: November, 2000

Structural Evaluation: Basically intolerable requiring high priority of corrrective action

Water Adequacy Evaluation: Equal to present minimum criteria

Average Daily Traffic: 110

Year of Average Daily Traffic: 1987

Sufficiency Rating: 40. %

Return to National Bridge Inventory Database query form.

Disclaimer Statement - Alexander Svirsky, Massroads.com and Granitehighways.com provide no warranty whatsoever, express or implied, as to the accuracy, reliability or completeness of furnished data.

NBI Structure Number: 009800810011700 Longitude: -72° 08' 55", Latitude: 43° 18' 5"

Place Name: Goshen (Town of)

GRANITEHIGHWAYS.COM

#[0][d]# 西鄉西 (花)

DINE. ETHOLISE CENTRA

Bridge otos and Road Photos and Train **Pictures** For Sale

Online

Show me a Map on the U.S. Census Service Tiger Map Server 10

Facility Carried: NH 10

Feature Intersected: GUNNISON BROOK Location: 1.78 MI N LEMPSTER TL

Year Built: 1975

Owned and maintained by: State Highway Agency

Functional Classification: Rural Major Collector

Service On Bridge: Highway-pedestrian Service Under Bridge: Waterway

Lanes On Structure: 2

Structure Length: 7.6 m

Bridge Roadway Width: 9.8 m Operating Rating: 61. Metric Tons Number of Spans in Main Unit: 1 Span

Material Design: Concrete

Design Construction: Frame (except frame culverts)

Deck Condition: Good Condition

Superstructure Condition: Good Condition Substructure Condition: Good Condition

Scour: Foundations determined to be stable for assessed scour conditions

Bridge Railing: Does not meet currently acceptable standards.

Inspection Date: July, 1999

Structural Evaluation: Better than present minimum criteria

Water Adequacy Evaluation: Superior to present desirable criteria

Average Daily Traffic: 2600

Year of Average Daily Traffic: 1993

Sufficiency Rating: 91. %

Return to National Bridge Inventory Database query form.

Disclaimer Statement - Alexander Svirsky, Massroads.com and Granitehighways.com provide no warranty whatsoever, express or implied, as to the accuracy, reliability or completeness of furnished data.

				14	
	1		6		
7 4 4 3 3 3	ì				
79.3		1	3	15-	

Water Resources

Data Category:	Geographic Area:		
Site Information 🔽	New Hampshire	•	go

GO

A scheduled power outage will affect access to **NWISWeb-historical data**, updates for <u>WaterWatch</u> maps, and ftp services for water.usgs.gov. The outage could begin as early as Friday, May 21, 2004 at 10:30 pm EDT, and may continue as late as Monday May 24, 2004, 12:00 pm EDT. We are sorry for any inconvenience this may cause.

The following NWISWeb services will be affected:

- Discrete data will not be available during this time period (Water Quality Information, Ground-water levels, peaks, historical streamflow)
- Daily Streamflow Conditions maps will not be up-to-date.
- However, Real-time data will be available at http://waterdata.usgs.gov/nwis

Site Map for New Hampshire

View real-time groundwater levels in Warner, NH. here

USGS 01152500 SUGAR RIVER AT WEST CLAREMONT, NH

Available data for this site | Station site map

		Productive all confirmation and grant and an analysis of the confirmation and grant and an analysis of the confirmation and an analysis of	er var er en et selven de de vels de en de en		17000000	
Sullivan County, N	New Hampshire					
Hydrologic Unit C	ode 01080104					
Latitude 43°23'15	", Longitude 72°21	'45" NAD27				
Drainage area 269.	.00 square miles					
Gage datum 358.78	8 feet above sea lev	el NGVD29				
Location of	f the site in New H	ampshire.		Site maj	j.	
¥						
					Ħ	
		#8 ×			19	
		1				
		∞				
				¥ .		
	,					
						-

Questions about data <u>gs-w-nh_NWISWeb_Data_Inquiries@usgs.gov</u>
Feedback on this websitegs-w-nh_NWISWeb_Maintainer@usgs.gov
NWIS Site Inventory for New Hampshire: Site Map
http://waterdata.usgs.gov/nh/nwis/nwismap?

Top Explanation of terms

Retrieved on 2004-05-24 09:45:31 EDT

Department of the Interior, U.S. Geological Survey
USGS Water Resources of New Hampshire

Privacy Statement || Disclaimer || Accessibility

11.15 0.91 sd